Un estudio participado por el Instituto de Astrofísica de Andalucía abre "nuevos escenarios" en la muerte de estrellas

E+I+D+i - Europa Press - Miércoles, 7 de Diciembre de 2022
Una colisión estelar que brilló casi un minuto llevó a estas conclusiones ahora publicadas.
Concepción artística de una fusión de dos estrellas de neutrones.
CSIC
Concepción artística de una fusión de dos estrellas de neutrones.

Un estudio, publicado en la revista Nature y en el que participa el Instituto de Astrofísica de Andalucía del CSIC, ha abierto "nuevos escenarios en la muerte de las estrellas" al recoger la detección de explosiones de rayos gamma (GRB) de casi un minuto de duración producido por la colisión de objetos compactos.

Las explosiones de rayos gamma (GRB), ha explicado CSIC en un comunicado este miércoles, son destellos asociados a explosiones extremadamente enérgicas y detectables incluso en galaxias a miles de millones de años luz de distancia. Su duración, considerada corta o larga en función de si se prolongan más de dos segundos, se asocia a su origen: los estallidos largos se producen con la muerte de estrellas muy masivas y los cortos con la fusión de dos objetos compactos, como estrellas de neutrones, agujeros negros o ambos.

Ahora, el estudio publicado en la revista Nature abre un nuevo escenario. Las estrellas de neutrones son objetos muy compactos y de rápida rotación que surgen cuando una estrella muy masiva expulsa su envoltura en una explosión de supernova. Sabemos que la fusión de estrellas de neutrones producirá un estallido corto de rayos gamma, ondas gravitatorias y una kilonova.

Se cree que la mayor parte del oro y el platino en la Tierra se formaron como resultado de antiguas kilonovas

Este último fenómeno es similar a las supernovas, pero su energía procede en parte del decaimiento de especies radiactivas y produce grandes cantidades de elementos pesados. De hecho, se cree que la mayor parte del oro y el platino en la Tierra se formaron como resultado de antiguas kilonovas.

"Al estudiar el estallido, denominado GRB211211A, observamos indicios claros que apuntaban a una kilonova, producida en la fusión de dos estrellas de neutrones, y no a una supernova, la explosión con la que terminan su vida las estrellas muy masivas. De hecho, la luminosidad, duración y color de la kilonova son similares a otro evento muy conocido que se produjo en 2017, una fusión de estrellas de neutrones que constituyó la primera observación de un evento cósmico en luz y en ondas gravitatorias", ha señalado José Feliciano Agüí Fernández, investigador del Instituto de Astrofísica de Andalucía que participa en el estudio.

La firma característica de las kilonovas es su brillo en el infrarrojo cercano, muy superior a su brillo en luz visible. Esta diferencia se debe a que los elementos pesados expulsados por la kilonova bloquean la luz visible pero no la infrarroja, que presenta una longitud de onda mayor. "Sin embargo, observar en el infrarrojo cercano es un desafío técnico y pocos telescopios en tierra lo consiguen. Este hallazgo ha sido posible gracias a los telescopios gemelos Gemini, que nos mostraron que estábamos ante una fusión de estrellas de neutrones", ha señalado Jillian Rastinejad, investigadora de la Universidad de Nothwestern (EEUU) que encabeza el trabajo.

Las conclusiones del equipo científico, que empleó también datos de otros telescopios, entre ellos el Telescopio Espacial Hubble, el Gran Telescopio Canarias (La Palma) o el telescopio de 2.2 metros del Observatorio de Calar Alto (Almería), coinciden con las obtenidas por otro grupo encabezado por la Universidad Tor Vergata de Roma

Las conclusiones del equipo científico, que empleó también datos de otros telescopios, entre ellos el Telescopio Espacial Hubble, el Gran Telescopio Canarias (La Palma) o el telescopio de 2.2 metros del Observatorio de Calar Alto (Almería), coinciden con las obtenidas por otro grupo encabezado por la Universidad Tor Vergata de Roma que, tras estudiar el estallido con distinto enfoque y observaciones, también concluyó que se produjo por una kilonova.

Además de contribuir a nuestra comprensión de las kilonovas y los GRBs, este descubrimiento proporciona una nueva forma de estudiar la formación de los elementos pesados en el universo. Hasta hace poco existían discrepancias sobre lo que se conoce como proceso-r (o proceso rápido), que tiene lugar en eventos estelares explosivos y es responsable de la producción de la mitad de los elementos más pesados que el hierro, entre ellos el uranio y el oro.

Aunque en un principio se pensaba que eran las supernovas la fuente de estos elementos, los últimos estudios favorecen a las fusiones de estrellas de neutrones como principales productoras de los elementos más pesados.